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Abstract
This paper provides the generalization of the work by Floreanini et al
(1993 J. Phys. A: Math. Gen. 26 611–4) who generated bibasic hypergeometric
functions from (p, q)-oscillators. We consider a six-parameter deformed
oscillator algebra realized from the (p, q)-deformed boson oscillators. We
build the corresponding Fock space representation in an infinite-dimensional
subspace of the Hilbert space of a harmonic oscillator. We also discuss the
properties of a discrete spectrum of the Hamiltonian of the deformed harmonic
oscillator corresponding to this system. We then define a realization of the
deformed algebra in terms of a generalized derivative and investigate the
relation between this representation and generalized bibasic Laguerre functions
and polynomials.

PACS numbers: 02.30.Gp, 02.20.Uw

1. Introduction

The deformation of quantum algebras and its study continue to be at the core of many
investigations in mathematics and physics. The interest to quantum deformations, in particular
to the quantum (p, q)-deformations of Lie algebras, is connected with the possible applications
in the quantum field theories (conformal, topological field theories, etc) and quantum groups.
For a nice description of two-parameter quantum groups and their representations; see, for
example, [1, 2] and references therein.

At the study of the quantum groups and algebras, it became evident their connection
with the noncommutative geometry and other branches of mathematics. One of the fruitful
studies, besides their representations, is their relations with the theory of special functions.
For instance, it was shown that q-oscillator algebra [10] (resp. (p, q)-oscillator algebra [1])
provides an algebraic interpretation of various q-special functions [9] (resp. (p, q)-special
functions [3]). The algebraic interpretation of many q-special functions (resp. (p, q)-special
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functions) has been shown to proceed in analogy with the Lie theory treatment of their classical
counterparts [12]: one considers deformed exponentials of the generators of a deformed
algebra and observes that their matrix elements in representation spaces are expressible in
terms of deformed special functions; one then uses models to derive properties of these
functions through symmetry techniques. This approach has proved to be very fruitful. It is
the one we adopt here, following [3] where the authors have examined the relation between
the representation theory of a two-parameter deformation of the oscillator algebra and certain
bibasic Laguerre functions and polynomials.

This paper is organized as follows. In section 2, we briefly review the (p, q)-oscillator,
provide with its generalization involving six parameters and build the corresponding Fock
representation. In section 3, we discuss the properties of discrete spectrum of the Hamiltonian
of the deformed oscillator corresponding to this oscillator-like system. In section 4, we
generate a representation of the new algebra in terms of derivatives. We then compute the
matrix elements of deformed exponentials related to the annihilation and creation operators,
and deduce the relation between this representation and generalized bibasic Laguerre functions
and polynomials.

2. Generalized (p, q)-oscillator algebra and its Fock space representation

The (p, q)-oscillator algebra is generated by three elements A,A† and N obeying relation [1]

AA† − p−1A†A = qN AA† − qA†A = p−N (1a)

[N,A] = −A [N,A†] = A†, (1b)

where A,A† are identified, respectively, as the deformed annihilation and creation operators of
a (p, q)-oscillator, N = a†a is the excitation number operator of a conventional (nondeformed)
boson oscillator ([a, a†] = 1) and p, q are independent deformation parameters. In general,
these two parameters may be real or a phase factor. In the following, we take throughout p and
q to be real and positive. It should be noted that, in the limit p → 1, algebras (1a) and (1b)
reduce to the defining relations of the maths-type q oscillator and for p = q, one recovers the
physics-type q oscillator.

The relation of A and A† in terms of the conventional boson operators a and a† is given
by

A = af (N;p, q) = a

√
[N ]p,q

N
A† = f (N;p, q)a† =

√
[N ]p,q

N
a†, (2)

where the symbol [N ]p,q is expressed by

[N ]p,q = qN − p−N

q − p−1
. (3)

As can be seen, the deformation function f (N;p, q) has no zeros at positive integer
eigenvalues of N (including zero). So, the deformed annihilation operator A has a single
vacuum state, i.e., |0〉, like the operator a. On the other hand, for those deformed operators
A′s for which the function f (N;p, q) has zeros at positive integer eigenvalues of N, there
is a set of vacuum states. In this case, if we assume that the operator A annihilates a set of
number states |ni〉, i = 1, 2, . . . , k, then, we can construct a sector Si by repeatedly applying
A† on the number state |ni〉. Thus, we have k sectors corresponding to the states that are
annihilated by A. A given sector may turn out to be either finite or infinite dimensional. In
particular, the infinite-dimensional sectors are of special interest. One of the reasons is that,
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in each infinite-dimensional sector, it is possible to construct an operator, say G†, which is the
canonical conjugate of A, i.e., [A,G†] = I. However, in the finite-dimensional sectors the
construction does not apply [4]. This plays an important role in the construction of coherent
states associated with the deformed algebra.

Let us now deal with the generalization of the relations (1a) and (1b) as follows:

qν

pµ
AA† − qA†A =

(
pµ−1

qν

)N

φ1(p, q) (4a)

qν

pµ
AA† − p−1A†A =

(
pµ

qν−1

)N

φ2(p, q) (4b)

[N,A] = −A [N,A†] = A†, (4c)

where φ1 and φ2 are two non-singular and real-valued positive functions of deformation
parameters satisfying the following inequalities:

φ1(p, q) > φ2(p, q) for Q = pq > 1 (5)

φ1(p, q) < φ2(p, q) for Q = pq < 1. (6)

We also assume that there exists an integer k0 such that φ1(p, q) = (pq)k0φ2(p, q). The
parameters µ and ν are real numbers. It is worth noticing that if ν = µ = 0 and
φ1(p, q) = φ2(p, q) ≡ 1, one recovers the relations (1a).

The harmonic oscillator realization of the generalized deformed oscillator (4a) and (4b)
in their simplest form

A = af (N;p, q, µ, ν) A† = f (N;p, q, µ, ν)a† (7)

looks as

A = a

√(
pµ

qν

)N
qNφ2(p, q) − p−Nφ1(p, q)

N(q − p−1)
(8)

A† =
√(

pµ

qν

)N
qNφ2(p, q) − p−Nφ1(p, q)

N(q − p−1)
a†. (9)

There are two vacua for the deformed operator A, namely, the ground state |0〉 and the number
state |k0〉 such that

k0 = 1

ln(pq)
ln

(
φ1(p, q)

φ2(p, q)

)
. (10)

One can readily show that conditions (5) and (6) guarantee that the integer number k0 is non-
negative. In this manner, we have two sectors S0 and Sk0 which are constructed by repeatedly
applying A† on |0〉 and |k0〉, respectively. The sector S0 is of finite dimension spanned by
the states |0〉, |1〉, |2〉, . . . , |k0 − 1〉; on the other hand, the infinite-dimensional sector Sk0 is
spanned by the states |k0〉, |k0 + 1〉, . . . and gives a bosonic representation of algebras (4a),
(4b) and (4c) without the first finite Fock states.

Let us construct the Fock representation of the generalized oscillator (4a), (4b) and (4c)
in the sector Sk0 . We take {|n〉 ≡ |k0 + m〉;m = 0, 1, 2, . . .} as the complete orthonormal set
of number states. One finds
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A|n〉 =
√(

pµ

qν

)n

p−k0φ1(p, q){n − k0}p,q |n − 1〉

=
√(

pµ

qν

)n

qk0φ2(p, q){n − k0}p,q |n − 1〉. (11)

A†|n〉 =
√(

pµ

qν

)n+1

p−k0φ1(p, q){n − k0 + 1}p,q |n + 1〉

=
√(

pµ

qν

)n+1

qk0φ2(p, q){n − k0 + 1}p,q |n + 1〉 (12)

|n〉 ≡ |k0 + m〉

=
(

pµ

qν

)−m(m+2k0+1)/4
(p−k0φ1(p, q))−m/2√{m}p,q!

(A†)m|k0〉

=
(

pµ

qν

)−m(m+2k0+1)/4
(qk0φ2(p, q))−m/2√{m}p,q!

(A†)m|k0〉

=
√

k0!

(k0 + m)!
(a†)m|k0〉, (13)

where {m}p,q! = {m}p,q{m−1}p,q . . . {1}p,q, {0}p,q! ≡ 1 and {m}p,q = (qm−p−m)/(q−p−1).
As required, the radicands in (11) and (12) are always positive, since does the number

{m}p,q = (qm − p−m)/(q − p−1),m ∈ N. Therefore, the operators A and A†, expressed by
(8) and (9), acting on the space {|n〉}, are well defined.

The corresponding number operator N
µ,ν
p,q reads

Nµ,ν
p,q =

m∑
r=1

(p−1 − q)r

p−r − qr

(
pµ−1

qν

)r(r−1)/2−Nr

p−(k0+1)r (qk0φ2(p, q))−r (A†)rAr (14)

such that

Nµ,ν
p,q |k0 + m〉 = m|k0 + m〉. (15)

For k0 = 0, (φ1 = φ2 ≡ 1) and µ = ν = 0, relations (11)–(15) reduce to the
corresponding relations for the (p, q)-deformed oscillator defined in [1].

3. Spectrum of Hamiltonian of (p, q, µ, ν, φ1, φ2)-deformed oscillator

The Hamiltonian of the (p, q, µ, ν, φ1, φ2)-deformed oscillator (4a), (4b) and (4c) can be
defined in the same way as in the case of the standard q-deformed oscillator. From relations
(4a) and (4b) we have

A†A|n〉 =
(

pµ

qν

)n
qnφ2(p, q) − p−nφ1(p, q)

q − p−1
|n〉 (16a)

AA†|n〉 =
(

pµ

qν

)n+1
qn+1φ2(p, q) − p−(n+1)φ1(p, q)

q − p−1
|n〉. (16b)
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The Hamiltonian

H = A†A + AA† (17)

of the (p, q, µ, ν, φ1, φ2)-deformed oscillator has the diagonal form in the basis {|n〉 ≡
|m + k0,m = 0, 1, . . .}:

H |n〉 = εn|n〉, (18)

where

εn =
(

pµ

qν

)n
qnφ2(p, q) − p−nφ1(p, q)

q − p−1
+

(
pµ

qν

)n+1
qn+1φ2(p, q) − p−(n+1)φ1(p, q)

q − p−1
. (19)

Using (10), (19) can be re-written

εn =
(

pµ

qν

)n

qk0φ2(p, q)

[(
1 +

pµ−1

qν

)
{n − k0}p,q + q(n−k0)

pµ

qν

]
(20)

or equivalently

εn =
(

pµ

qν

)n

qk0φ2(p, q)

[(
1 +

pµ

qν−1

)
{n − k0}p,q + p−(n−k0)

pµ

qν

]
. (21)

It follows from (20) and (21) that the spectrum of the Hamiltonian (17) is symmetric
under the change q → p−1, p → p−1, µ → ν and ν → µ.

4. Generalized bibasic hypergeometric functions

On the space � of all finite linear combinations of the monomials zn, z ∈ C, n ∈ Z:

� =
{∑

n∈P

anz
n; an ∈ C, P ⊂ Z

}

we define a realization of algebras (4a), (4b) and (4c) in terms of the following representation:

A†h(z) := zh(z) (22a)

Ah(z) := 1

z(p−1 − q)

(
pµ

qν

)ρ (
p−ρφ1(p, q)h

(
pµ−1

qν
z

)
− qρφ2(p, q)h

(
pµ

qν−1
z

))
(22b)

Nh(z) :=
(

ρ + z
d

dz

)
h(z). (22c)

The action of the generators on the basis vectors of �, fm = zn, where m = ρ + n, is given by

A†fm = fm+1 (23a)

Afm =
(

pµ

qν

)m
p−mφ1(p, q) − qmφ2(p, q)

p−1 − q
fm−1 (23b)

Nfm = mfm. (23c)

It turns out that, as in the case of (p, q)-oscillator algebra, the (p, q, µ, ν, φ1, φ2)-oscillator
algebra (4a), (4b) and (4c) reveals to be useful to construct generalized bibasic special
functions. Indeed, by analogy with [5], let us define a (p, q, µ, ν, φ1, φ2)-function as follows:

E
µ,ν
p,q,φ1,φ2

(z) =
+∞∑
n=0

(
pµ

qν

)n(n+1)/2 (
q

p

)n(n−1)/2
zn

[p, q;p, q]φ1,φ2
n

|pµ| < |qν−1| |pq| < 1 (µ, ν) �= (−1, 2), (24)
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where

[pα, qβ;p, q]φ1,φ2
n =

(
1

pα
φ1(p, q) − qβφ2(p, q)

) (
1

pα+1
φ1(p, q) − qβ+1φ2(p, q)

)

. . .

(
1

pα+n−1
φ1(p, q) − qβ+n−1φ2(p, q)

)
. (25)

In terms of the q-shifted factorial (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), one can readily
check that

[pα, qβ;p, q]φ1,φ2
n = p−(n(n−1)/2+αn)

(
φ2(p, q)

φ1(p, q)
pαqβ;pq

)
n

(φ1(p, q))n . (26)

Provided a (p, q, µ, ν, φ1, φ2)-generalization of the derivative, D
µ,ν
p,q,φ1,φ2

, as follows

D
µ,ν
p,q,φ1,φ2

h(z) := 1

z

(
φ2(p, q)h

(
qν

pµ−1
z

)
− φ1(p, q)h

(
qν−1

pµ
z

))
(27)

its actions on E
µ,ν
p,q,φ1,φ2

(z) produces

D
µ,ν
p,q,φ1,φ2

(
E

µ,ν
p,q,φ1,φ2

(z)
) = −p

q
E

µ,ν
p,q,φ1,φ2

(z). (28)

Obviously, for the restrictions φ1(p, q) = φ2(p, q) ≡ 1 and µ = ν = 0, one recovers the well
known (p,q)-derivative introduced in [3].

As a result of such an extension, we then arrive at the definition of the generalized bibasic
hypergeometric series:

�


a : c

; q, p,µ, ν, φ1(p, q), φ2(p, q), z

b : d


 =

+∞∑
l=0

(a; q)l(c;p)l(
φ2(p,q)

φ1(p,q)
q; q

)
l
(b; q)l(d;p)l

×
(

pµ+ν

qν

)l(l+1)/2 [
(−1)lql(l−1)/2

]1+m−n[
(−1)lpl(l−1)/2

]s−r

(
z

φ1(p, q)

)l

, (29)

where

a = (a1, . . . , an) c = (c1, . . . , cr )

b = (b1, . . . , bm) d = (d1, . . . , ds)
(30)

(a; q)l = (a1; q)l . . . (an; q)l. (31)

Restricted to ν = µ = 0 and φ1(p, q) = φ2(p, q) ≡ 1, it exactly reproduces the well-
known bibasic hypergeometric series [6]. Furthermore, the function E

µ,ν
p,q,φ1,φ2

(z) can be now
expressed as

�


− : 0

;pq, p,µ, ν, φ1(p, q), φ2(p, q), pz

− : −


 = E

µ,ν
p,q,φ1,φ2

(z). (32)

To proceed to the generalization of known special functions, one should stress the deformation
functions φ1 and φ2 to satisfy concrete suitable relations. As a matter of convenience, from
now on, we set φ1(p, q) = φ2(p, q) = f (p, q) and lim(p,q)→(1,1) f (p, q) = 1. Therefore,
the function (24) becomes a (p, q, µ, ν, f )-exponential, namely

E
µ,ν

p,q,f (z) =
+∞∑
n=0

(
pµ

qν

)n(n+1)/2 (
q

p

)n(n−1)/2
(

z
f (p,q)

)n

[p, q;p, q]n
, (33)
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where

[pα, qβ;p, q]n =
(

1

pα
− qβ

) (
1

pα+1
− qβ+1

)
· · ·

(
1

pα+n−1
− qβ+n−1

)
. (34)

The generalized bibasic hypergeometric series (29) becomes

�


a : c

; q, p,µ, ν, f (p, q), z

b : d


 =

+∞∑
l=0

(a; q)l(c;p)l

(q; q)l(b; q)l(d;p)l

(
pµ+ν

qν

)l(l+1)/2

× [
(−1)lql(l−1)/2

]1+m−n[
(−1)lpl(l−1)/2

]s−r

(
z

f (p, q)

)l

. (35)

It is noteworthy that, in the case µ = ν = 0 and f (p, q) ≡ 1, one recovers the (p, q)-analogue
of the exponential defined by Floreanini et al [3]. In the limit (p, q) → (1, 1), once z has
been rescaled by (p−1 − q), all these functions exactly tend to the ordinary exponential

lim
(p,q)→(1,1)

E
µ,ν

p,q,f ((p−1 − q)z) = exp(z). (36)

Let us then introduce the operators

U (µ,ν,f )(α, β) = E
µ,ν

p,q,f (α(p−1 − q)A†)E
µ,ν

p,q,f (β(p−1 − q)A) (37)

which, for (p, q) → (1, 1), tend to the Lie group element exp(αA†) exp(βA). Their matrix
elements, in the representation space spanned by the vectors fm = zn,m = n + ρ, are defined
by

U (µ,ν,f )(α, β)zn =
+∞∑

r=−∞
U(µ,ν,f )

r,n (α, β)zr . (38)

Using now (23a), (23b), (33), (26) and (35), one can straightforwardly establish the relevant
relation

U(µ,ν,f )
r,n (α, β) = βn−r

(
q

p

)(n−r)(n−r−1)/2 (
pµ

qν

)(n−r)(n+ρ+1)

×L(n−r)
ρ+r

(−αβp

q
;p, q, µ, ν, f (p, q)

)
, (39)

where the generalized-Laguerre function L(λ)
ν̃ (x;p, q, µ, ν, f (p, q)) is given by

L(λ)
ν̃ (x;p, q, µ, ν, f (p, q)) = [pλ+1, qλ+1;p, q]ρ+r

[p, q;p, q]ρ+r

×�




(pq)−ν̃ : 0

;pq, p,µ, ν, f (p, q), (1 − pq)

(
pµ

qν−1

)λ+ν̃+1

x

(pq)λ+1 : −


 . (40)

This provides an algebraic interpretation of a special class of the generalized bibasic functions
of hypergeometric type. It can be used to obtain generating function. Indeed, from formulae
[3]

+∞∑
n=0

[ph, qτ ;p, q]n
[p, q;p, q]n

zn = (pqτ
z ;pq)∞

(p1−hz, pq)∞
(41)

and [7]

(a;pq)λ = (a;pq)∞
(a(pq)λ;pq)∞

(42)
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one shows that

U (µ,ν,f )(α, β)zn = E
µ,ν

p,q,f (α(p−1 − q)z)zn

(
−p2β

z

(
pµ−1

qν

)n+ρ+1

;pq

)
n+ρ

. (43)

Inserting this result and expression (39) of the matrix elements U
(µ,ν,f )
r,n (α, β) in (38), and

setting n = 0, β = −q/p and t = −1/z, one can deduce the searched relation

E
µ,ν

p,q,f

(−α(p−1 − q)/t
) (

−pqt

(
pµ−1

qν

)ρ+1

;pq

)
ρ

=
+∞∑

r=−∞

(
q

p

)r(r+1)/2 (
pµ

qν

)r(ρ+1)

×L(r)
ρ−r (α;p, q, µ, ν, f (p, q)) tr . (44)

For (p, q) → (1, 1), this equation reduces to the generating relation [8]

e−α/t (1 + t)ρ =
+∞∑

r=−∞
t rL

(r)
ρ−r (α) (45)

for the usual Laguerre functions L
(m)
λ . Besides, taking ρ = 0 and restricting to analytic

functions, one obtains, from the above-generalized algebra, a representation bounded below.
Using fm := zm, with m ∈ Z

+ as basis vectors, the matrix elements of U (µ,ν,f )(α, β) now
defined as

U (µ,ν,f )(α, β)zn =
+∞∑
r=0

U(µ,ν,f )
r,n (α, β)zr (46)

are simply obtained by setting ρ = 0 in (39). Since for ν̃ integer, L(λ)
ν̃ (x;p, q, µ, ν, f ) is

a polynomial of order ν̃, the matrix elements U
(µ,ν,f )
r,n (α, β) are here expressed in terms of

generalized-Laguerre polynomials, called (p, q, µ, ν, f )-Laguerre polynomials. A generating
function for these polynomials can be obtained as follows. If ρ = 0, by substituting β by q/p

and α by −α, we obtain

E
µ,ν

p,q,f (−α(p−1 − q)z)zn

(
−pq

z

(
pµ−1

qν

)n+1

;pq

)
n

=
+∞∑
r=0

(
q

p

)(n−r)(n−r+1)/2

×
(

pµ

qν

)(n−r)(n+1)

L(n−r)
r (α;p, q, µ, ν, f (p, q)) zr , (47)

which is nothing but a (p, q, µ, ν, f )-analogue of relation [8]

e−αz(1 + z)n =
+∞∑
r=0

L(n−r)
r (α)zr (48)

for ordinary Laguerre polynomials L
(m)
λ to which (47) reduces when (p, q) → (1, 1).

To conclude, let us point out that at first sight the function f (p, q) in the generalized
hypergeometric series (35) can be eliminated by a rescaling of the variable z/f by writing, for
instance, z̃ = z/f . But, a closer look on the development performed in the following shows
that one immediately leads to the appearance of the same function f in the arguments of the
generalized Laguerre functions (39)–(40) as well as in the associated subsequent relations.
Hence, a choice has to be made. One can also imagine that the generalized exponentials
(33) can be subjected to the same rescaling, what does not correspond to its definition which
follows from the representation (22)–(23) of the generalized oscillator algebra (4a)–(4c) in
the space of monomials of complex variables when φ1 = φ2 = f .
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Finally, it would be of some interest to investigate the classes of operators which generate
such a (p, q, µ, ν, φ1, φ2)-generalized oscillator algebra and the conditions of its closure. In
the same vein, the search for specific relations between φ1 and φ2 to generate generalizations of
all known special functions could be envisaged. These questions are now under consideration.
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